Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Rev Immunol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698083

RESUMEN

Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.

2.
Nat Immunol ; 25(4): 607-621, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589621

RESUMEN

One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain-gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials.


Asunto(s)
Investigación Biomédica , COVID-19 , Humanos , Síndrome Post Agudo de COVID-19 , Hospitalización , Inmunoglobulina G
3.
HGG Adv ; : 100300, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38678364

RESUMEN

Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B*15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B*15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the US (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B*15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections studied, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38502541

RESUMEN

RATIONALE: Respiratory syncytial virus (RSV) is a common global respiratory virus increasingly recognized as a major pathogen in frail older adults and as a cause of chronic obstructive pulmonary disease (COPD) exacerbations. There is no single test for RSV in adults with acceptable diagnostic accuracy. Trials of RSV vaccines have recently shown excellent safety and efficacy against RSV in older adults; defining the frequency of RSV-related community infections and COPD exacerbations is important for vaccine deployment decisions. OBJECTIVES: This prospective study aimed to establish the frequency of outpatient-managed RSV-related exacerbations of COPD in two well-characterized patient cohorts using a combination of diagnostic methods. METHODS: Participants were recruited at specialist clinics in London, UK and Groningen, NL from 2017 and observed for three consecutive RSV seasons, during exacerbations and at least twice yearly. RSV infections were detected by reverse transcription-polymerase chain reaction (RT-PCR) and serologic testing. MEASUREMENTS AND MAIN RESULTS: 377 patients with COPD attended 1,999 clinic visits and reported 310 exacerbations. There were 27 RSV-related exacerbations (8·7% of total); of these, seven were detected only on PCR, 16 only on serology and 4 by both methods. Increases in RSV specific N-protein antibody were as sensitive as antibody to pre-F or post-F for serodiagnosis of RSV related exacerbations. CONCLUSIONS: RSV is associated with 8.7% of outpatient managed COPD exacerbations in this study. Antibodies to RSV-N protein may have diagnostic value, potentially important in a vaccinated population. The introduction of vaccines that prevent RSV is expected to benefit patients with COPD. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

5.
Sci Immunol ; 9(92): eadj9285, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335268

RESUMEN

Human infection challenge permits in-depth, early, and pre-symptomatic characterization of the immune response, enabling the identification of factors that are important for viral clearance. Here, we performed intranasal inoculation of 34 young adult, seronegative volunteers with a pre-Alpha severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain. Of these participants, 18 (53%) became infected and showed an interferon-dominated mediator response with divergent kinetics between nasal and systemic sites. Peripheral CD4+ and CD8+ T cell activation and proliferation were early and robust but showed distinct kinetic and phenotypic profiles; antigen-specific T cells were largely CD38+Ki67+ and displayed central and effector memory phenotypes. Both mucosal and systemic antibodies became detectable around day 10, but nasal antibodies plateaued after day 14 while circulating antibodies continued to rise. Intensively granular measurements in nasal mucosa and blood allowed modeling of immune responses to primary SARS-CoV-2 infection that revealed CD8+ T cell responses and early mucosal IgA responses strongly associated with viral control, indicating that these mechanisms should be targeted for transmission-reducing intervention.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vacunación , Linfocitos T CD8-positivos , Mucosa Nasal
6.
J Infect Dis ; 229(Supplement_1): S112-S119, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271230

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is a significant cause of infant morbidity and mortality worldwide. Most children experience at least one 1 RSV infection by the age of two 2 years, but not all develop severe disease. However, the understanding of genetic risk factors for severe RSV is incomplete. Consequently, we conducted a genome-wide association study of RSV severity. METHODS: Disease severity was assessed by the ReSVinet scale, in a cohort of 251 infants aged 1 week to 1 year. Genotyping data were collected from multiple European study sites as part of the RESCEU Consortium. Linear regression models were used to assess the impact of genotype on RSV severity and gene expression as measured by microarray. RESULTS: While no SNPs reached the genome-wide statistical significance threshold (P < 5 × 10-8), we identified 816 candidate SNPs with a P-value of <1 × 10-4. Functional annotation of candidate SNPs highlighted genes relevant to neutrophil trafficking and cytoskeletal functions, including LSP1 and RAB27A. Moreover, SNPs within the RAB27A locus significantly altered gene expression (false discovery rate, FDR P < .05). CONCLUSIONS: These findings may provide insights into genetic mechanisms driving severe RSV infection, offering biologically relevant information for future investigations.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Lactante , Niño , Humanos , Estudio de Asociación del Genoma Completo , Virus Sincitial Respiratorio Humano/genética , Genotipo , Análisis por Micromatrices
7.
Clin Exp Immunol ; 215(1): 1-14, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556759

RESUMEN

Early life is a time of increased susceptibility to infectious diseases and development of allergy. Innate lymphocytes are crucial components of the initiation and regulation of immune responses at mucosal surfaces, but functional differences in innate lymphocytes early in life are not fully described. We aimed to characterize the abundance and function of different innate lymphocyte cell populations in cord blood in comparison to that of adults. Blood was collected from adult donors and umbilical vessels at birth. Multicolor flow cytometry panels were used to identify and characterize lymphocyte populations and their capacity to produce hallmark cytokines. Lymphocytes were more abundant in cord blood compared to adults, however, mucosal-associated invariant T cells and natural killer T (NKT)-like cells, were far less abundant. The capacity of NKT-like cells to produce cytokines and their expression of the cytotoxic granule protein granzyme B and the marker of terminal differentiation CD57 were much lower in cord blood than in adults. In contrast, natural killer (NK) cells were as abundant in cord blood as in adults, they could produce IFNγ, and their expression of granzyme B was not significantly different from that of adult NK cells, although CD57 expression was lower. All innate lymphoid cell (ILC) subsets were more abundant in cord blood, and ILC1 and ILC2 were capable of production of IFNγ and IL-13, respectively. In conclusion, different innate lymphoid cells differ in both abundance and function in peripheral blood at birth and with important implications for immunity in early life.


Asunto(s)
Inmunidad Innata , Células Asesinas Naturales , Humanos , Adulto , Recién Nacido , Citocinas/metabolismo , Subgrupos Linfocitarios , Expresión Génica
8.
Nat Commun ; 14(1): 8053, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052824

RESUMEN

Compared to intramuscular vaccines, nasally administered vaccines have the advantage of inducing local mucosal immune responses that may block infection and interrupt transmission of respiratory pathogens. Live attenuated influenza vaccine (LAIV) is effective in preventing influenza in children, but a correlate of protection for LAIV remains unclear. Studying young adult volunteers, we observe that LAIV induces distinct, compartmentalized, antibody responses in the mucosa and blood. Seeking immunologic correlates of these distinct antibody responses we find associations with mucosal IL-33 release in the first 8 hours post-inoculation and divergent CD8+ and circulating T follicular helper (cTfh) T cell responses 7 days post-inoculation. Mucosal antibodies are induced separately from blood antibodies, are associated with distinct immune responses early post-inoculation, and may provide a correlate of protection for mucosal vaccination. This study was registered as NCT04110366 and reports primary (mucosal antibody) and secondary (blood antibody, and nasal viral load and cytokine) endpoint data.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Niño , Adulto Joven , Humanos , Formación de Anticuerpos , Anticuerpos Antivirales , Membrana Mucosa , Vacunas Atenuadas , Inmunidad Mucosa
9.
J Infect Dis ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38134401

RESUMEN

BACKGROUND: While inflammatory and immune responses to SARS-CoV-2 infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished COVID-19 severity categories, and relate these to disease progression and peripheral inflammation. METHODS: We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalised with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0-5 days post-symptom onset) or late (6-20 days post-symptom onset). RESULTS: Patients that survived severe COVID-19 showed IFN-dominated mucosal immune responses (IFN-γ, CXCL10 and CXCL13) early in infection. These early mucosal responses were absent in patients that would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by IL-2, IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. CONCLUSIONS: Defective early mucosal anti-viral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19.

10.
Clin Transl Med ; 13(12): e1507, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38115705

RESUMEN

Whereas most infants infected with respiratory syncytial virus (RSV) show no or only mild symptoms, an estimated 3 million children under five are hospitalized annually due to RSV disease. This study aimed to investigate biological mechanisms and associated biomarkers underlying RSV disease heterogeneity in young infants, enabling the potential to objectively categorize RSV-infected infants according to their medical needs. Immunophenotypic and functional profiling demonstrated the emergence of immature and progenitor-like neutrophils, proliferative monocytes (HLA-DRLow , Ki67+), impaired antigen-presenting function, downregulation of T cell response and low abundance of HLA-DRLow B cells in severe RSV disease. HLA-DRLow monocytes were found as a hallmark of RSV-infected infants requiring hospitalization. Complementary transcriptomics identified genes associated with disease severity and pointed to the emergency myelopoiesis response. These results shed new light on mechanisms underlying the pathogenesis and development of severe RSV disease and identified potential new candidate biomarkers for patient stratification.


Asunto(s)
Mielopoyesis , Infecciones por Virus Sincitial Respiratorio , Lactante , Niño , Humanos , Mielopoyesis/genética , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/genética , Virus Sincitiales Respiratorios , Antígenos HLA-DR , Biomarcadores
11.
J Infect ; 87(6): 538-550, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863321

RESUMEN

OBJECTIVES: The amount of SARS-CoV-2 detected in the upper respiratory tract (URT viral load) is a key driver of transmission of infection. Current evidence suggests that mechanisms constraining URT viral load are different from those controlling lower respiratory tract viral load and disease severity. Understanding such mechanisms may help to develop treatments and vaccine strategies to reduce transmission. Combining mathematical modelling of URT viral load dynamics with transcriptome analyses we aimed to identify mechanisms controlling URT viral load. METHODS: COVID-19 patients were recruited in Spain during the first wave of the pandemic. RNA sequencing of peripheral blood and targeted NanoString nCounter transcriptome analysis of nasal epithelium were performed and gene expression analysed in relation to paired URT viral load samples collected within 15 days of symptom onset. Proportions of major immune cells in blood were estimated from transcriptional data using computational differential estimation. Weighted correlation network analysis (adjusted for cell proportions) and fixed transcriptional repertoire analysis were used to identify associations with URT viral load, quantified as standard deviations (z-scores) from an expected trajectory over time. RESULTS: Eighty-two subjects (50% female, median age 54 years (range 3-73)) with COVID-19 were recruited. Paired URT viral load samples were available for 16 blood transcriptome samples, and 17 respiratory epithelial transcriptome samples. Natural Killer (NK) cells were the only blood cell type significantly correlated with URT viral load z-scores (r = -0.62, P = 0.010). Twenty-four blood gene expression modules were significantly correlated with URT viral load z-score, the most significant being a module of genes connected around IFNA14 (Interferon Alpha-14) expression (r = -0.60, P = 1e-10). In fixed repertoire analysis, prostanoid-related gene expression was significantly associated with higher viral load. In nasal epithelium, only GNLY (granulysin) gene expression showed significant negative correlation with viral load. CONCLUSIONS: Correlations between the transcriptional host response and inter-individual variations in SARS-CoV-2 URT viral load, revealed many molecular mechanisms plausibly favouring or constraining viral replication. Existing evidence corroborates many of these mechanisms, including likely roles for NK cells, granulysin, prostanoids and interferon alpha-14. Inhibition of prostanoid production and administration of interferon alpha-14 may be attractive transmission-blocking interventions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Femenino , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Masculino , SARS-CoV-2/genética , Carga Viral , Transcriptoma , Mucosa Nasal , Prostaglandinas , Interferón-alfa
12.
J Allergy Clin Immunol ; 152(5): 1167-1178.e12, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37536510

RESUMEN

BACKGROUND: There is limited knowledge on how local cytokine secretion patterns after nasal allergen challenge correlate with clinical symptoms especially with regard to the "late allergic response," which occurs in approximately 40% to 50% of patients with allergy. OBJECTIVE: We sought to characterize the immunologic and clinical nasal responses to birch pollen allergen challenge with a special focus on the late allergic response. METHODS: In this randomized, double-blind, placebo-controlled trial, birch pollen-allergic participants were challenged with birch pollen extract (n = 20) or placebo (n = 10) on 3 consecutive days. On days 1 and 3, nasal secretions were collected at selected time points over a 24-hour time course for the measurement of 33 inflammatory mediators. Clinical responses were determined through subjective symptom scores and objective nasal airflow measurements. RESULTS: Provoked participants had significantly greater clinical responses and showed significant increases in tryptase and the soluble IL-33 receptor serum stimulation 2 (sST2) in nasal secretions within minutes compared with the placebo group. Eight of 20 provoked participants displayed high IL-13 levels 2 to 8 hours after allergen provocation. This group also showed significant changes in clinical parameters, with a secondary drop in nasal airflow measured by peak nasal inspiratory flow and increased symptoms of nasal obstruction, which significantly differed from IL-13 nonresponders after 6 hours. CONCLUSIONS: IL-13 response status correlates with clinical responses and type 2 cytokine responses in the late phase after allergen provocation.


Asunto(s)
Hipersensibilidad , Rinitis Alérgica Estacional , Humanos , Interleucina-13 , Polen , Alérgenos , Citocinas , Mucosa Nasal , Pruebas de Provocación Nasal
14.
Nature ; 617(7962): 764-768, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37198478

RESUMEN

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).


Asunto(s)
COVID-19 , Enfermedad Crítica , Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , COVID-19/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Genotipo , Técnicas de Genotipaje , Monocitos/metabolismo , Fenotipo , Proteínas de Unión al GTP rab/genética , Transcriptoma , Secuenciación Completa del Genoma
15.
Clin Exp Immunol ; 213(2): 243-251, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37095599

RESUMEN

Post-acute cardiac sequelae, following SARS-CoV-2 infection, are well recognized as complications of COVID-19. We have previously shown the persistence of autoantibodies against antigens in skin, muscle, and heart in individuals following severe COVID-19; the most common staining on skin tissue displayed an inter-cellular cement pattern consistent with antibodies against desmosomal proteins. Desmosomes play a critical role in maintaining the structural integrity of tissues. For this reason, we analyzed desmosomal protein levels and the presence of anti-desmoglein (DSG) 1, 2, and 3 antibodies in acute and convalescent sera from patients with COVID-19 of differing clinical severity. We find increased levels of DSG2 protein in sera from acute COVID-19 patients. Furthermore, we find that DSG2 autoantibody levels are increased significantly in convalescent sera following severe COVID-19 but not in hospitalized patients recovering from influenza infection or healthy controls. Levels of autoantibody in sera from patients with severe COVID-19 were comparable to levels in patients with non-COVID-19-associated cardiac disease, potentially identifying DSG2 autoantibodies as a novel biomarker for cardiac damage. To determine if there was any association between severe COVID-19 and DSG2, we stained post-mortem cardiac tissue from patients who died from COVID-19 infection. This confirmed DSG2 protein within the intercalated discs and disruption of the intercalated disc between cardiomyocytes in patients who died from COVID-19. Our results reveal the potential for DSG2 protein and autoimmunity to DSG2 to contribute to unexpected pathologies associated with COVID-19 infection.


Asunto(s)
Autoanticuerpos , COVID-19 , Humanos , Autoanticuerpos/metabolismo , Sueroterapia para COVID-19 , SARS-CoV-2 , Miocardio
16.
J Leukoc Biol ; 113(4): 351-353, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36806711

RESUMEN

Trans-epithelial migration and physical interaction are required for full activation of neutrophils during in vitro RSV infection.


Asunto(s)
Activación Neutrófila , Infecciones por Virus Sincitial Respiratorio , Humanos , Neutrófilos , Fagocitosis , Comunicación Celular
17.
EBioMedicine ; 87: 104402, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36543718

RESUMEN

BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios de Seguimiento , Vacunación , Hospitalización , Inmunoglobulina A , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos Neutralizantes
18.
Immunology ; 168(3): 473-492, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36175370

RESUMEN

Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade is considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in COVID-19 to date, comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalized COVID-19 patients collected across the hospitalization period as part of the UK ISARIC4C (International Acute Respiratory and Emerging Infection Consortium) study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to healthy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples were associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention.


Asunto(s)
COVID-19 , Humanos , Activación de Complemento , Proteínas del Sistema Complemento/metabolismo , Complemento C3b , Biomarcadores , Progresión de la Enfermedad , Vía Alternativa del Complemento
19.
medRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38168184

RESUMEN

Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B*15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B*15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the US (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B*15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified. These findings suggest that memory T-cell immunity to seasonal coronaviruses does not strongly influence the outcome of SARS-CoV-2 infection in unvaccinated individuals.

20.
Lancet Healthy Longev ; 3(6): e405-e416, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-36098319

RESUMEN

BACKGROUND: Respiratory viral infections are typically more severe in older adults. Older adults are more vulnerable to infection and do not respond effectively to vaccines due to a combination of immunosenescence, so-called inflamm-ageing, and accumulation of comorbidities. Although age-related changes in immune responses have been described, the causes of this enhanced respiratory disease in older adults remain poorly understood. We therefore performed volunteer challenge with respiratory syncytial virus (RSV) in groups of younger and older adult volunteers. The aim of this study was to establish the safety and tolerability of this model and define age-related clinical, virological, and immunological outcomes. METHODS: In this human infection challenge pilot study, adults aged 18-55 years and 60-75 years were assessed for enrolment using protocol-defined inclusion and exclusion criteria. Symptoms were documented by self-completed diaries and viral load determined by quantitative PCR of nasal lavage. Peripheral blood B cell frequencies were measured by enzyme-linked immunospot and antibodies against pre-fusion and post-fusion, NP, and G proteins in the blood and upper respiratory tract were measured. The study was registered with ClinicalTrials.gov, NCT03728413. FINDINGS: 381 adults aged 60-75 years (older cohort) and 19 adults aged 18-55 years (young cohort) were assessed for enrolment using protocol-defined inclusion and exclusion criteria between Nov 12, 2018, and Feb 26, 2020. 12 healthy volunteers aged 60-75 years and 21 aged 18-55 years were inoculated intranasally with RSV Memphis-37. Nine (67%) of the 12 older volunteers became infected, developing mild-to-moderate upper respiratory tract symptoms that resolved without serious adverse events or sequelae. Viral load peaked on day 6 post-inoculation and symptoms peaked between days 6 and 8. Increases in circulating IgG-positive and IgA-positive antigen-specific plasmablasts, serum neutralising antibodies, and pre-F specific IgG were similar younger and older adults. However, in contrast to young participants, secretory IgA titres in older volunteers failed to increase during infection and, unlike serum IgG, did not correlate with protection. INTERPRETATION: Better understanding of age-related differences in clinical outcomes and immune correlates of protection can overcome reduction in vaccine efficacy with advancing age. We identify correlates of protection in older adults, revealing previously unrecognised factors which might have implications for targeted vaccine discovery and drug development in this vulnerable group. FUNDING: Medical Research Council and GlaxoSmithKline EMINENT Consortium.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Anciano , Anticuerpos Antivirales , Humanos , Inmunoglobulina G , Proyectos Piloto , Infecciones por Virus Sincitial Respiratorio/prevención & control , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...